Macro Equation Sheet

Percent change in price:	$\% \Delta P = \frac{P_{is} - P_{was}}{P_{was}} 100\%$
Percent change in quantity:	$\% \Delta Q = \frac{Q_{is} - Q_{was}}{Q_{was}} 100\%$
Elasticity:	$\varepsilon = \frac{\% \Delta Q}{\% \Delta P}$
Consumer Price Index:	$CPI_{2003} = \frac{PL_{2003}}{PL_{base \ year}} 100\%$
Inflation Rate:	$\pi = \frac{CPI_{is} - CPI_{was}}{CPI_{was}} 100\%$
Change in Inflation:	$\Delta \pi = \pi_{is} - \pi_{was}$
Real GDP Growth Rate:	$g = \frac{GDP_{is} - GDP_{was}}{GDP_{was}} 100\%$
Unemployment Rate:	u = U/L (where $U = L - E$)
Disposable Income:	$DI = Y - T$ (where $Y = GDP^{real}$)
Marginal Propensity	mps = 1 - mpc
Consumption:	$C = [W - PL + Y_e - r] + mpc \cdot DI$
Snarrian Consumption:	$C = [W - PL + Y_e - r - mpc \cdot T] + mpc \cdot Y$
Import Function:	$M = mpm \cdot Y$
Aggregate Expenditure:	$AE = \left[W - PL + Y_e - r - mpc \cdot T + I + G + X\right] + \left\{mpc - mpm\right\} \cdot Y$
Aggregate Demand:	$PL_{AD} = \left[W + Y_e - r - mpc \cdot T + I + G + X\right] - \left\{mps + mpm\right\} \cdot Y$
Production Function:	$Y = Z \cdot \sqrt{K \cdot R \cdot (E - U_n)}$
LRAS Function:	$Y_p = Z \cdot \sqrt{K \cdot R \cdot L}$
SR Aggregate Supply:	$PL_{SRAS} = \left[w + p + t - b \cdot Y_p\right] + b \cdot Y$
Demand for Reserves:	$i_{ff} = \left[\rho \cdot D + S\right] - \beta \cdot Q_R^D$
Supply of Reserves:	Vertical part = $R_N + R_B$
	Horizontal part = i_d